Warning: file_put_contents(aCache/aDaily/post/machinelearning_interview/-1481-1482-1483-1481-): Failed to open stream: No space left on device in /var/www/tg-me/post.php on line 50
Machine learning Interview | Telegram Webview: machinelearning_interview/1482 -
Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 SmolVLM: набор компактных VLM от HuggingFace - Base, Synthetic и Instruct.

SmolVLM - серия компактных VLM отличающихся высокой эффективностью использования памяти и могут быть развернуты на локальных устройствах с ограниченными ресурсами.

Только что были выпущены SmolVLM (256M и 500M), которым требуются GPU <1GB для запуска.

🤗 SmolVLM-256M – это cамая маленькая VLM в мире!

Модели настолько маленькт, что могут работать 100% локально в вашем браузере на WebGPU!

🧠МЕНЬШЕ И УМНЕЕ: теперь модели на 256M параметров достаточно, чтобы превзойти Idefics 80B- модель, которая вышла 18 месяцев назад 🔥

📌Лицензирование:  Apache 2.0

⭐️ Smolervlm: https://huggingface.co/blog/smolervlm
🤗 Модели: https://huggingface.co/collections/HuggingFaceTB/smolvlm-256m-and-500m-6791fafc5bb0ab8acc960fb0

@ai_machinelearning_big_data


#AI #ML #SmallVLM #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1482
Create:
Last Update:

🌟 SmolVLM: набор компактных VLM от HuggingFace - Base, Synthetic и Instruct.

SmolVLM - серия компактных VLM отличающихся высокой эффективностью использования памяти и могут быть развернуты на локальных устройствах с ограниченными ресурсами.

Только что были выпущены SmolVLM (256M и 500M), которым требуются GPU <1GB для запуска.

🤗 SmolVLM-256M – это cамая маленькая VLM в мире!

Модели настолько маленькт, что могут работать 100% локально в вашем браузере на WebGPU!

🧠МЕНЬШЕ И УМНЕЕ: теперь модели на 256M параметров достаточно, чтобы превзойти Idefics 80B- модель, которая вышла 18 месяцев назад 🔥

📌Лицензирование:  Apache 2.0

⭐️ Smolervlm: https://huggingface.co/blog/smolervlm
🤗 Модели: https://huggingface.co/collections/HuggingFaceTB/smolvlm-256m-and-500m-6791fafc5bb0ab8acc960fb0

@ai_machinelearning_big_data


#AI #ML #SmallVLM #Huggingface

BY Machine learning Interview





Share with your friend now:
tg-me.com/machinelearning_interview/1482

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

Machine learning Interview from id


Telegram Machine learning Interview
FROM USA